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1 Overview

This lecture covers most of sections 1.3 and 1.5 in Teschl’s book. If there is time, 1.4 will

be covered as well. The first part of the lecture (section 1.3) deals with the existence and

uniqueness of autonomous ODE’s, given certain restrictions on the function f(x) = ẋ. The

second part introduces the qualitative approach to ODE analysis, i.e. understanding the

long-term behavior of solutions of ODE’s, without finding explicit solutions. If there is time,

we will go over some formulas for specific ODE’s (section 1.4).

2 Section 1.3

In the last lecture, Nikhil established that any ODE can be represented by the form

ẋ = f(x, t), x(0) = x0

It will be shown that one way of getting existence and uniqueness of solutions is by having

the condition that f is independent of t, i.e ∂f
∂t

= 0 which is the definition of an autonomous

ODE. Further, we restrict our choice of f such that f ∈ C0(R,R).

We are therefore looking for solutions to

ẋ = f(x), x(0) = x0 (2.0.1)

Now, suppose that f(x0) 6= 0. Then, due to continuity, there exists a maximal open interval

I = (x1, x2) 3 x0 such that f(x) > 0 for x ∈ I. Note that x1, x2 ∈ [−∞,∞]. On I, we can

divide f(x) from both sides of (2.0.1) and integrate with respect to t to get∫ t

0

ẋ(s)ds

f(x(s))
= t
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A substitution of variables gives us ∫ x(t)

x(0)

du

f(u)
= t

Defining F (x(t)) ≡
∫ x(t)

x(0)
du
f(u)

, we can see that if ϕ(t) is a solution to (2.0.1), then F (ϕ(t)) = t

as well. This is very convenient, because all we need to do now is invert F to get an explicit

solution for ϕ.

Since f(x) > 0 on I, we have that if x(t1) > x(t2) in I, then
∫ x(t1)

x(0)
du
f(u)

>
∫ x(t2)

x(0)
du
f(u)

,

implying that F is strictly increasing. This now gives us that F has a unique and well

defined C1 inverse function F−1 : R → R. Defining ϕ(t) ≡ F−1(t), we now have existence

and uniqueness of a solution.

A natural question arises: What is the largest interval on which ϕ is defined? The an-

swer lies in the range of F . Define the following two numbers:

T+ = lim
x→x2

F (x), T− = lim
x→x1

F (x)

Note that T+ ∈ (0,∞], since F (x0) = 0 and F (x) > F (x0) for x > x0, and similarly,

T− ∈ [−∞, 0). Since F is increasing, the range of F is (T−, T+), and so ϕ ∈ C1((T−, T+)).

Let examine whether or not we can extend solutions beyond (T−, T+). If T+ < ∞ while

x2 = ∞, then we cannot not extend, because ϕ approaches infinity at T+. The only other

possible case is when f(x2) = 0, in which case we could just set ϕ(t) = x2 for t > T+. Similar

reasoning holds for when T− is finite.

Note that if f(x0) = 0 then the solution may still exist, but it may not be unique.

Example 2.1. Consider f(x) =
√
x, where x(0) = x0.

If we assume at first that x0 > 0, then f(x0) > 0. So, we can compute

F (x) =

∫ x(t)

x0

dx√
x

= 2(
√
x−
√
x0)
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Therefore if F (ϕ(t)) = t, then

2(
√
ϕ(t)−

√
x0) = t

ϕ(t) =
(t+ 2

√
x0

2

)2

This is defined on the interval (−2
√
x0,∞). Now, if x0 = 0, then ϕ(t) =


−
(

t
2

)2
if t < t1

0 if t ∈ (t1, t2)(
t
2

)2
if t > t2

is a solution, for any t1 < 0 and t2 > 0.

3 Section 1.5

Previously, we found explicit solutions to ODE’s, but often times, F (x) is very difficult to

compute. In this section, we see that an explicit solution is not need to answer questions

regarding the long-time behavior of the system. Let us begin with an example

Example 3.1. The logistic growth model is given as ẋ = −x2 + x − h = f(x), where

x : R → R. I’m not exactly sure how to properly draw a graph in Latex, but it’s in the

textbook. The basic idea is that we draw the graph of the function on a plane, and observe

where the function is positive, negative and zero.

Key takeaways from this example in textbook:

At positive points of f , x(t) increases, and at negative points x(t) decreases, and if x(t)

reaches a point r at time tr such that f(r) = 0, then x(t) = r for all t > tr. Further,

if WLOG f(x0) > 0, (where x0 is the initial condition) and there is no r > x0 such that

f(r) = 0, then as t→∞, x(t) =∞. This makes sense, because the derivative of any solution

x(t) given the initial condition x0 would be positive for all time.

What if our differential equation is not-autonomous? This type of qualitative analysis is

still possible.
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Example 3.2. Consider the ODE: ẋ = x2 − t2 = f(x, t). We know this function is C1, so

it’s locally Lipschitz and a unique solution exists. However, we will not try to explicitly solve

it and see what we can deduce just be looking at the level curves of the function f . Again,

I don’t quite know how to draw graphs on Latex, but they are in the textbook.

This time, we consider, only for t ≥ 0, the regions of the (x, t) plane for which f(x, t) is

positive and negative. These regions are split by the graphs x = t and x = −t. By graphical

analysis, it becomes clear that there are some regions for which if a solution starts in that

region, it cannot leave that region due to the sign of f . Further, there are regions for which

all solutions starting in that region must leave that region for another. As a result of these

sort of findings, one can determine the long-time behavior of solutions depending on initial

conditions (t0, x0).

There are more questions we can answer with the qualitative approach:

- Do solutions converge to their limits in finite or infinite time?

- Which solutions do/don’t converge to the level curve f(t, x) = 0?

In order to answer these questions, we need to introduce the concept of a super and sub

solution.

Definition 3.3. A super solution is a differentiable function x+(t) such that ẋ+(t) > f(t, x)

in a certain interval [t0, T )

Definition 3.4. Similarly, a sub solution is a differentiable function x−(t) such that ẋ+(t) <

f(t, x) in a certain interval [t0, T )

Example 3.5. The functions x+(t) = t and x−(t) = −t are respectively super and sub

solutions of the ODE in ex. 3.2. The whole point of these definitions are to capture the role

that these functions played in the previous exercise.

The importance of the super and sub solutions can be understood by the following lemma:

Lemma 3.6. Let x+(t) and x−(t) be super and sub solutions of the differential equation

ẋ = f(x, t) on [t0, T ). Then for every solution x(t), we have that:

If x(0) < x+(0), then x(t) < x+(t) for t ∈ (t0, T )

If x(0) > x−(0), then x(t) > x−(t) for t ∈ (t0, T )
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Proof. Define ∆(t) = x+(t)−x(t). Since by assumption, x+(t0) ≥ x(t0), we see that ∆(t0) ≥
0. Further,

∆̇(t) = ẋ+(t)− ẋ(t) > f(t, x)− f(t, x) = 0

Because in the interval (t0, T ), we have that ẋ+(t) > f(t, x), while ẋ(t) = f(t, x). This

proves the first part of the lemma. The second part follows similarly.

Now that we can see the importance of super and sub solutions, the name of the game

seems to be: How can I find increasingly restrictive super and sub solutions to better under-

stand the convergence of solutions? This can be done by finding other level curves of f(t, x),

called isoclines, and seeing whether or not these isoclines are super or sub solutions.

Definition 3.7. An isocline of f is the set of points where f(t, x) = c for a particular c ∈ R.

For basically the rest of the section, the textbook just deals with example 3.2. (i.e.

ẋ = x2 − t2). Consider the isocline f(t, x) = −2, or x2 − t2 = −2. Solving for x, we get

x = ±
√
t2 − 2, but just consider for now

x = −
√
t2 − 2

. We can check that is in fact a super solution y+(t), because

ẏ+(t) =
−t√
t2 − 2

> −2 = f(t, x(t))

If f > 2
√

2
3
. Now, it is straightforward to check two things:

- y+(t) converges to x−(t) = −t
- y+(t) > x(t) = −t for a certain interval

Therefore, if a solution ϕ(t) is such that x−(t) ≤ ϕ(t0) ≤ y+(t), then ϕ(t) must converge

to x−(t) as well! A natural follow-up question is: Does every solution between x−(t) = −t
and x+(t) = t end up in-between x−(t) and y+(t)? The answer is yes. Consider the function

−y+(t). Since x−(t) < −y+(t) < x+(t), f(t, x) is decreasing (on either) of y+(t). Therefore

every solution starting between x−(t) and x+(t) will eventually be below −y+(t). Further,

for all solutions x(t) in-between y+(t) and −y+(t), we can calculate that ẋ(t) < −2, which

means that the slope of ẋ(t) is steeper than the line x−(t), meaning that eventually, x(t) will

enter the region between y+(t) and x−(t), and so it will eventually converge to x−(t).
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We have just shown that if the solution ϕ(t) is such that x−(t) < ϕ(t) < x+(t), then

eventually ϕ(t) will converge to x−(t).

Now, let us think about the region where x(t) > x+(t) = t. Consider the isocline f(t, x) = 2,

and in particular, y(t) =
√

2 + t2 which turns out to be a sub solution. Since y−(t) > x+(t),

we look at solutions that stay within the region between y−(t) and x+(t) for finite time

t ∈ (0, T ). Look at the solutions with initial conditions (T, x+(T )) and (T, y+(T )) at time

t = 0. These two solutions diverge from each other, as one crosses x+, and the other crosses

y−. By looking at the graph, it becomes apparent that the solutions that are in this region

for at least time T are between the solution curves with the initial conditions (T, x+(T ))

and (T, y+(T )). Interestingly, above x+, ∂f(t, x)∂t > 0, meaning that the distance between

solutions increases with time. However, we can verify that y− converges to x+. These two

pieces of information tell us that for any bunch of solutions in the region between y− and

x+, at most one can remain in this region, i.e. converge to x+.

We finally show that if a solution x(t) > y(t), then x(t) → ∞ in finite time. For every

such x(t), we know that ẋ(t) > 2. Therefore, x(t) > 2(t− t0) + x0. This in turn means that

there exists ε > 0 such that

x(t) >
2√

1− ε

Therefore, ẋ(t) > x(t)2 − (1− ε)t2 = εx2

Now, we already know that the function ẋ(t) = εx2 diverges to infinity in finite time, and

so we are done, because our solution lies above the solution for which ẋ(t) = εx2.Note that

this approach only works if f : R2 → R.
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