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1 Overview

The Characteristic function is an important concept in probability theory, because it sig-

nificantly simplifies otherwise cumbersome calculations. In particular, the characteristic

function derives its useful properties from those of the Fourier Operator. The first part of

the lecture serves to define the Fourier Operator F, determine in what context(s) can we

invert the operator, and observe some of its properties. In the second part of the lecture, I

define the characteristic function using the Fourier Operator, and demonstrate its usefulness

in probability theory by proving some corollaries and lemmas.

2 The Fourier Operator on the Schwartz Space

We begin by observing how the Fourier Operator behaves on a space of C∞ functions whose

derivatives decay very rapidly to ±∞.

Definition 2.1. The Schwartz Space, denoted S(R), is the set of C∞(R) functions such that

for any α, β ∈ N

lim
|x|→∞

xα
dβ

dxβ
f(x) = 0

In other words, if a function is in the Schwartz space, then given any polynomial p, we

can show that the function and its derivatives decay faster than p. A next question might

be, what sort of functions live in S(R)?

Example 2.2. The function f(x) = e−ax
2
, a ∈ R, is an element of S(R).

Proof. Due to negative exponentiation, lim|x|→∞ f(x) = 0. Moreover, given any α ∈ N, it

makes sense that e−ax
2

grows at a rate significantly faster than xα, so lim|x|→∞ x
αe−ax

2
= 0.

Since f(x) ∈ C∞(R), taking derivatives, we see that dβ

dxβ
f(x) =

∑2β−1

n=1 x
αnf(x), where αi ∈ N.

Since each term in the sum decays due to what we showed earlier, the entire sum will decay

no matter the values of αi. Further, if we multiply each term by some xα, our previous

claims allows to conclude that the sum will decay for large |x|, giving us that f(x) is in the
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Schwartz space. Below is a picture:
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As we can see from the example, functions on the Schwartz space “look almost like”

bump functions. This

Let us look at how the Fourier Operator behaves on this space.

Definition 2.3. The Fourier Operator is defined as F : S(R)→ L1(R) such that

F(f)(ξ) =

∫
R
e−2πiyξf(y)dy ≡ f̂(ξ)

Proposition 2.4. The Operator is well-defined.

Proof. We first show that S(R) ⊂ L1(R). For any f ∈ S(R) , we observe that since

lim|x|→∞ x
2f(x) = 0 and f is continuous on R, there exists a ball B0(δ) ⊂ R such that

x2f(x) < 1 for x ∈ R \ B0(δ). Further, f is bounded on B0(δ) due to continuity by a

constant M . Therefore,∫
R
fdx =

∫
B0(δ)

fdx+

∫
R\B0(δ)

fdx ≤M +

∫
R\B0(δ)

1

x2
≤M − 2(

1

δ
) <∞

Proving that f ∈ L1(R). Looking at the Fourier Transform, we see that Therefore,∣∣∣ ∫
R
e−2πiyξf(y)dy

∣∣∣ ≤ ∫
R
|e−2πiyξf(y)|dy ≤ ||f ||L1
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This tells us that f̂ ∈ L1(R).

We can go even further to state the following:

Corollary 2.5. S(R) ⊂ Lp(R), for all p ≥ 1.

Proof. The proof uses the exact same method as that of Proposition 2.4, but instead we use

the fact that lim|x|→∞ x
2pf(x) = 0 for p ∈ [1,∞). For p = ∞ we can just use the fact that

lim|x|→∞ f(x) = 0 and invoke f ∈ C(R) to state that f is bounded.

Fourier transform of any Schwartz function, f̂(ξ) is now shown well defined for all ξ ∈ R.

We now prove some important properties of F:

Proposition 2.6. 1 For F : S(R)→ L1(R).

1. F(f ′)(ξ) = 2πiξf̂(ξ)

2. ξαf̂(ξ) = 1
(2πi)α

F(f (α))(ξ)

3. d
dξ
f̂(ξ) = −2πi x̂f(x)

Proof. 1. Using the integration by parts formula, if we set u(x) = e−2πiξx, dv = f ′(x)dx,

then:

F(f ′)(ξ) =

∫
R
e−2πiξxf ′(x)dx =

∫ ∞
−∞

udv

= e−2πiξxf(x)
∣∣∣∞
−∞

+ 2πiξ

∫
R
e−2πiξxf(x)dx

= 2πiξf̂(ξ)

The first term of the second line vanishes due to lim|x|→∞ f(x) = 0. This proves the

first equality.

2. Using the first equality, we can see that

F(f (α))(ξ) = 2πiξF(f (α−1))(ξ) = (2πiξ)2F(f (α−2))(ξ) = · · · = (2πiξ)αF(f)(ξ)

1Note that f (α) means that α derivative of f . Note that F(f) = f̂ , and different notation was used to
avoid any confusion regarding taking the derivative.
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3. We can calculate:

d

dξ
f̂(ξ) =

d

dξ

∫
R
e−2πiξxf(x)dx

=

∫
R

d

dξ
e−2πiξxf(x)dx

=

∫
R
−2πie−2πiξxxf(x)dx = −2πi x̂f(x)

These properties are interesting, and upon careful observance, we see that if f is Schwartz,

then so must f̂ . Therefore, F maps S(R) into itself. Due to a lot of technicality and a limited

amount of time, I will state without proof that in fact F : S → S is bijective and an also

a linear automorphism if S is seen as a group with the convolution operation. However, we

will prove that F is invertible. Before we do so, we must prove a lemma:

Lemma 2.7. For all ε > 0

ê−πε2x2(ξ) = ε−1e−π
ξ2

ε2

Proof. By direct computation

ê−πε2x2(ξ) =

∫
R
e−2πixξe−π(εx)

2

dx

=

∫
R
e−π(εx)

2−2πixξ

=

∫
R
e−(

√
πξ
ε

+
√
πεx)2−πξ

2

ε2 dx

= e−πξ
2

∫
R
e(
√
πξ
ε

+
√
πεx)2dx

= e−πξ
2 1

ε
√
π

∫
R
e−u

2

du = ε−1e−πξ
2

The last step was from a result we computed during the complex analysis module (i.e. that

the Gaussian integral is equal to
√
π).

Before we begin proving the Fourier Inversion Formula, we must first define a concept

important to the proof:
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Definition 2.8. An Approximation to the Identity is a family of L1(R) functions {Fε(x)},
ε ∈ R+ such that

1.
∫
R Fε = 1 for all ε

2. |Fε(x)| ≤ Aε−1

3. |Fε(x)| ≤ Aε
x2

These approximations derive their name from the following theorem, which I will state

without proving:

Theorem 2.9. If {Fε} is an approximation of the identity, and f ∈ L1(R)∩C(R), then for

every x ∈ R,

lim
ε→0

Fε ∗ f(x) = f(x)

I would like to state the following proposition, which can be straightforwardly verified:

Proposition 2.10. {Gε}ε>0 such that

Gε = ε−1e−πε
−2(x)2

is an approximation of the identity.

We covered this theorem and did exercises like this in 209; one can look in Stein and

Shakarchi Chapter 3. On to the main theorem:

Theorem 2.11 (The Fourier Inversion Formula). F−1 exists, and is given by

F−1(f̂)(x) =

∫
R
e2πixξf̂(ξ)dξ

Proof. Observe that if we define

Fε(ξ) = e2πiξe−πε
2ξ2 f̂(ξ)

It is clear that lim
ε→0

Fε(ξ) = e2πiξf̂(ξ). Further, for all ε > 0,

|Fε(ξ)| ≤ |e2πiξe−πε
2ξ2 f̂(ξ)| ≤ |f̂ |
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We have shown already that f̂ ∈ L1, so by the dominated convergence theorem:

lim
ε→0

∫
R
e2πixξe−πε

2ξ2 f̂(ξ)dξ =

∫
R
e2πixξf̂(ξ)dξ

Using our formula for f̂(ξ), and the fact that
∣∣∣ ∫R e2πixξf̂(ξ)dξ

∣∣∣ ≤ ||f̂ ||L1 We can substitute

and invoke Fubini’s theorem to get that

lim
ε→0

∫
R
e2πixξe−πε

2ξ2 f̂(ξ)dξ = lim
ε→0

∫
R
e2πixξe−πε

2ξ2dξ

∫
R
e−2πiyξf(y)dy

= lim
ε→0

∫
R

∫
R
e−2πi(y−x)ξe−πε

2ξ2dξf(y)dy

= lim
ε→0

∫
R
ε−1e−πε

−2(y−x)2f(y)dy

= lim
ε→0

(Gε ∗ f)(x)

= f(x)

The second to last step was due to the observation that f ∈ C(R) ∩ L1(R), along with the

fact that {Gε} is an approximation of the identity (which I did not prove, but omitted due

to time constraints). This proves that the Fourier inversion formula holds, i.e., that F is

invertible, and

F−1(f̂)(x) =

∫
R
e2πixξf̂(ξ)dξ

Now that we have shown that F is bijective, a natural question that arises is: Given that

L2 is Hilbert Space that is important in analysis, how does the L2 norm of f ∈ S(R) compare

with that of f̂? The following theorem shows us that they are exactly the same!

Theorem 2.12. (Plancherel’s Theorem) Given f, g ∈ S(R), 〈f, g〉 = 〈f̂ , ĝ〉, where 〈·, ·〉 is

the inner product on L2(R).

Proof. We first observe that∫
R
f(x)ĝ(x)dx =

∫
R
f(x)

∫
R
e−2πixξg(ξ)dξ

=

∫
R

∫
R
e−2πixξf(x)dxg(ξ)dξ (Fubini)

=

∫
R
f̂(ξ)g(ξ)dξ
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Then, recalling the formula for the inner product, we see that

〈f̂ , ĝ〉 =

∫
R
f̂(ξ)ĝ(ξ)dξ =

∫
R
ĝ(ξ)f̂(ξ)

=

∫
R

ˆ̂g(ξ)f(ξ)dξ (from the previous calculation)

=

∫
R
gfdξ

= 〈f, g〉

The last step was due to the observation that ˆ̂g = ˆ̂g = g, since conjugates pass through

integrals.

Plancherel’s Theorem hints at the fact that the Fourier Operator is in fact a Unitary

operator on L2.

3 The Characteristic Function

In Probability Theory, the Characteristic function is essentially the Fourier transform of a

the density function of a random variable. For this section, we set the Fourier transform of

a function to be ∫
R
e−ixtf(x)dx = f̂(t)

All properties of the previous section still hold for this modified Fourier Operator - but exact

results differ by constants.

Definition 3.1. Given a random variable X, the Characteristic Function is defined as

φ : R→ C such that

φX(t) = E[eiXt]

One can immediately conclude the following:

Proposition 3.2. 1. |φ(t)| = |E[eiXt]| ≤ E[|eiXt|] = 1

2. lims→t φ(s) = lims→t E[eiXt] = E[lims→t e
iXt] = φ(t) by DCT. Hence, φ is continuous.

3. If Y = aX + b, a, b ∈ R, then φY (t) = E[e2πi(aX+b)t] = eibtE[ei(aX)t] = φaX(t)

7



4. If X has a density function f , then

φX(t) =

∫
R
eixtf(x)dx = f̂(−t)

5. If X1, . . . , Xn are independent random variables, then

φX1+···+Xn(t) = E
[ n∏
k=1

eiXkt
]

=
n∏
k=1

E[eiXkt] =
n∏
k=1

φXk(t)

The last two observations show why the characteristic function is important. It allows us

to find the distribution of a sum of independent random variables just by multiplying their

characteristic functions together and taking a Fourier transform. At this point, we should

check for understanding by seeing an example of a characteristic function.

Example 3.3. The characteristic function of a normal random variable X with mean 0 and

variance 1 is φX(t) = e−t
2/2

Proof. The probability density of this random variable is given as f(x) = 1√
2π
e−x

2/2. f ∈
S(R) so

φX(t) =

∫
R
eixte−x

2/2dx

=
1√
2π

∫
R
e
−( t√

2
−i x√

2
)2− t

2

2 dx

=
1√
2π
e−

t2

2

∫
R
e
−( t√

2
−i x√

2
)2
dx

=
1√
2π

√
2πe−

t2

2 = e−
t2

2

Example 3.4. The Characteristic function of σX+µ, where X is a normal random variable

X with mean 0 and variance 1, is

φ(t) = eiµte−σ
2t2/2

We prove one last Theorem regarding the derivatives of the function - another major

reason why the Fourier series are useful.
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Theorem 3.5. If X is a random variable with φ as its characteristic function and E[|X|] <
∞, then φ is continuously differentiable, and

φ′(0) = iE[X]

Proof. We would like to use the Dominated Convergence Theorem to prove this. We therefore

observe that

|eiθ − 1| ≤
∣∣∣ ∫ θ

0

ieisds
∣∣∣ ≤ ∫ θ

0

ds = θ

Now, we can show that ∣∣∣ei(t+δ)x − ei(t)x
δ

∣∣∣ ≤ |δx||δ| ≤ |x|
Now, since E[|X|] < ∞ it must follow that

∫
R xdµ(x) < ∞ as well. Therefore, we can use

DCT to calculate

φ′(t) = lim
δ→0

φ(t+ δ)− φ(t)

δ
= lim

δ→0

∫
R

ei(t+δ)x − ei(t)x

δ
dµ(x)

=

∫
R

lim
δ→0

ei(t+δ)x − ei(t)x

δ
dµ(x)

=

∫
R
ixeitxdµ(x)

φ′(0) = iE[0]

Proving the Theorem

The ease with which we can take derivatives and add random variables using the char-

acteristic function is the major reason as to why the Fourier Operator is useful for studying

probability.
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