
WALL’S OBSTRUCTION THEOREM

ANUBHAV NANAVATY

Abstract. This paper discusses Wall’s Finiteness Obstruction Theorem, which addresses when a CW

complex that is dominated by a finite complex has the homotopy type of a finite complex. We first introduce

the theorem using a more geometric setting to provide visual intuition, discussing necessary and sufficient

conditions for finite domination before stating and proving the theorem. Then, we state the analogous

theorem for chain complexes, which has allowed for the utilization of obstruction theory in other areas of

mathematics. We conclude by proving a well-known analogue of Wall’s theorem for G-CW complexes, or

complexes with a finite group action.
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1. Introduction

Finiteness obstruction plays an important role in dealing with problems related to classifying manifolds.

In high-dimensional topology, when proving two manifolds are homeomorphic, one often decomposes them

into smaller, more manageable homeomorphic manifolds. Finiteness obstructions must usually be overcome

in this process. We provide further motivation for the topic of the paper by giving examples of problems

where finiteness obstruction appears in their solutions (or partial solutions):

(1) (The Space-Form Problem): For any n ∈ N, can we classify every smooth manifold with Sn as a

universal cover?

(2) (The Triangulation Problem): Is every compact topological manifold without boundary homeomor-

phic to a finite polyhedron?

(3) When is a given smooth open manifold the interior of a smooth compact manifold with boundary?
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Section 2 provides some background in algebraic topology for the later sections (knowledge of undergraduate-

level algebraic topology is assumed). Section 3 gives us an overview of Wall’s results using geometric language,

Section 4 rephrases parts of Section 3 in terms of homological algebra, which will allow for the application

of obstruction theory in any homology theory.

2. Algebraic Topology: Prerequisites

For the entirety of the paper, we assume our spaces have the homotopy types of connected CW-complexes.

If X is such a space, then X̃ denotes its universal cover.

2.1. The Homotopy Groups of a Map.

Definition 2.1. Consider a map ϕ : X → Y . We can define a new space, called the mapping cylinder, to

be the quotient space

Mϕ :=
(

(X × I)
∐

Y
)
/ ∼

The equivalence relation is given by (0, x) ∼ f(x) for all x ∈ X. Further,
∐

denotes the disjoint union, and

I is the unit interval.

Loosely speaking, the mapping cylinder is the space obtained by “gluing” Y to one end of X × I by the

map ϕ. Note that Mf can be deformation retracted to Y by collapsing one end of X × I into the other,

which is identified by ϕ as a subspace of Y . Using this construction, we can define the homotopy groups of

ϕ.

Definition 2.2. Given a map ϕ : X → Y , we define ϕn(ϕ) to be the following relative homotopy groups:

πn(ϕ) := πn(Mϕ,X × {1})

Similarly, we can define

Hn(ϕ) := Hn(Mϕ,X × {1})

By our knowledge of long exact sequences of homotopy groups, we can observe that we have the following

exact sequence:

· · · → πn(X)→ πn(Mϕ)→ πn(ϕ)→ πn−1(X)→ . . .

We now conclude this subsection with the following definition, which is used extensively in the paper:

Definition 2.3. A map ϕ : X → Y is n-connected if πi(ϕ) = 0 for 0 ≤ i ≤ n.

Observe that ϕ must be n-connected if ϕ∗ : π(X) → π(Y ) is an isomorphism for i < n and a surjection

for i = n.

2.2. The Homotopy Fibration Associated to a Map. The goal of constructing a homotopy fibration

is to associate a fibration to every continuous map.

Definition 2.4. Given any map ϕ : X → Y , we define the mapping path space Nϕ = {(x, γx)|x ∈ X, γx :

I → Y such that γ(0) = ϕ(x)}. Further, Nϕ is given the subspace topology of X × Y I where Y I has the

compact open topology.

Observe that Nϕ deformation retracts onto X, which can be identified as {(x, cx)}, where cx is the

constant path at x. To see this retraction, shrink each curve γx to cx. This allows us to construct the

following map:
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Proposition 2.5. For every map ϕ : X → Y , we can associate the fibration p : Nϕ → Y such that

p(x, γx) = γ(1). Further, if we assign a base point y0 ∈ Y , we can define the homotopy fiber Fϕ := {(x, γx) ∈
Ef | γ(1) = y0}.

We will use the following proposition in the next section, and we will state it without proof:

Proposition 2.6. Given a map ϕ and the associated fibration p : Nϕ → Y , we get the isomorphism

πi(p) ∼= πi−1(Ff ).

2.3. The Action of π1(X) on πn(X) and Cn(X̃). Understanding the Z[π1] module structure on πn is

imperative to the geometric formulation of Wall’s finiteness theorem. In order to understand how π1(X, ∗)
acts on πn(X, ∗) of a space, we first need to see how any map α : I → X such that α(0) can be used to

construct a new map

πn(X,α(0))→ πn(X,α(1))

Proposition 2.7. Consider such a map α. Then, we can define a map πn(X,α(0)) → πn(X,α(1)) in the

following way:

Take a an element f : (In, ∂In) → (X,α(0)), and associate it to the map γf : (In, ∂In) → (X,α(1)) such

that we shrink the domain of f to a concentric cube Jn strictly inside In, and perform γ on each radial

segment between Jn and In as can be seen in this picture:

It can be observed that this map is only dependent on the homotopy class of α. Further, in a path-

connected space, we can use this proposition to observe that for any x0, x1 ∈ X, πn(X,x0) ∼= πn(X,x1). We

are now in a position to describe the action of π1(X, ∗) on πn(X, ∗), simply by restricting our attention to

curves α with the same starting and ending point.

Proposition 2.8. There is an action of π1(X, ∗) on πn(X, ∗) is given by:

[α : (I, ∂I)→ (X, ∗)][f : (In, ∂In)→ (X, ∗)] = [αf : (In, ∂In)→ (X, ∗)]

This action is well-defined up to homotopy class. Note, of course, that we cannot call πn(X) a π1(X)

module, because π1(X) is just a group. However, we can fix this using the concept of an integral group ring:

Definition 2.9. Given a ring R and a group G, the integral group ring, denoted R[G], is a ring where

the elements are those of the free R module with generating set G. Addition is defined by the free-module

structure, and multiplication is defined by using the group law on the basis elements (i.e. r1g1 × r2g2 =

r1r2(g1 + g2)) and extending linearly.

Now, for n ≥ 2, πn(X) is abelian, so we can now turn πn(X) into the module we want.

Proposition 2.10. For n ≥ 2, by the group action of π1(X) on πn(X), it follows that πn(X) is a Z[π1(X)]

module.

Further, we know that π1(X, ∗) acts on the covering space X̃, and therefore π1 will also act on the singular

n-chains of X̃. So, we observe that this action turns Cn(X̃) into a Z[π1(X)] module as well. Observe that,

while these two actions seem different, we will see in the next section that they are closely connected by the

Hurewicz homomorphism.
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2.4. Defining K̃0(Z[π1]). Consider a ring R, and denote SR to be the set of isomorphism classes of projective

R modules. Now, let F(SR) be the free-abelian group generated by S. We can define an equivalence relation

∼ on F(SR), where [X ⊕ Y ]− [X]− [Y ] ∼ [0].

Definition 2.11. We define K0(R) := F(SR)/ ∼. Further, there is a canonical injective homomorphism

i : Z → R, which extends in a natural way to i# : K0(Z) → K0(R) such that i#(1) = R (note that

K0(Z) ∼= Z). We can define the reduced projective class group to be

K̃0(Z[π1(X)]) = coker(i#)

The following is an exercise in definition chasing:

Exercise 2.12. Two R modules P and Q are in the same K̃0 class iff there exist finitely generated free

modules F,G such that P ⊕ F ∼= Q⊕G.

We have now introduced all of the machinery necessary to understand the statements and the proofs in

the next section.

3. A Geometric Understanding of Obstruction

Before arriving at the major theorem, it is necessary for understanding that we deal with the following

intermediate questions:

When does a CW-complex have the homotopy type of:

(1) a complex with a finite n-skeleton?

(2) a complex with finite dimension?

Answering these two questions will further tell us when a CW complex is dominated (or the retract) of a

finite complex (in both dimension and skeleta).

3.1. A Finite n-skeleton? We define the following properties for a space X, which we label as Fn:

F1: π1(X) is finitely generated.

F2: π1(X) is finitely presented, and for any finite 2-dimensional CW complex K2 and a 1- connected map

ϕ : K2 → X, π2(ϕ) is a finitely generated Z[π1] module.

Fn: F (n−1) holds, and for any (n−1)-connected map ϕ : Kn−1 → X, where Kn−1 is a finite n- dimensional

complex, πn(ϕ) is a finitely generated Z[π1] module. The major theorem from this subsection is as follows:

Theorem 3.1. X is homotopy equivalent to a CW complex with a finite n-skeleton iff X satisfies Fn.

Proof. Suppose X is a complex with a finite one skeleton. Then, we can compute the edge path group (which

is the same as the fundamental group) to see that π must be finitely generated. Further if X is a complex

with a finite two-skeleton, we can still compute the edge path group and observe that π1 is finitely presented.

Suppose n ≥ 3 and ϕ : Kn−1 → X is an n− 1 connected map and Kn−1 is a finite complex. We can modify

ϕ such that im(ϕ) ⊂ Xn−1, giving us the long exact sequence:

· · · → πn(X,Xn)→ πn−1(Xn,Kn−1)→ πn−1(X,Kn−1)→ . . .

Noting that πn−1(ϕ) can be identified with πn−1(X,Kn−1), we see that πn−1(X,Kn−1) = · · · = π1(Xn,Kn−1) =

0. Further, πk(X,Xn) = 0 for k < n, which implies that πk(Xn,Kn−1) = 0 for k < n. So, the induced map
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from Kn−1 to Xn is n− 1 connected as well. We can now deformation retract the skeleton Xi into Ki (for

i < n) via the mapping cylinder of ϕ, which is n− 1 connected. Then, by the Hurewicz isomorphism:

πn(ϕ) = πn(X,K) ∼= πn(X̃, K̃) ∼= Hn(X̃, K̃)

Observe that Hn(X̃, K̃) is a quotient of Hn(X̃n, K̃) ∼= Hn(Ỹ n+1, K̃), which is in turn a quotient of

Hn(Ỹ n, K̃) ∼= Cn(Ỹ ). Further, Cn(Ỹ ) is a finitely generated Z[π1] module due to the fact that Y is fi-

nite. Therefore, πn(ϕ) must also be finitely generated, proving the forward direction.

Now, for the reverse, suppose we have an n − 1 connected map ϕ : Kn → X. If n ≥ 3, we know that

π1(ϕ) = 0 so we can have X adopt the one-skeleton of Kn, which turns πn(ϕ) into a Z[π1] module. Since it

is finitely generated, we choose the generators α1, . . . , αn. Observe that ∂αi ∈ πn−1(K), and so we attach

n cells along each boundary, and one can check that this extends ϕ to an n-connected map. This allows X

to be homotopy equivalent to a CW complex with a finite n skeleton (where n depends on the number of

generators of πn(ϕ)). �

On its own, this theorem is not very insightful, because one does not know whether such (n−1) connected

maps ϕ can even be constructed. However, we hinted in the proof that we can construct such a map ϕ and

a CW complex K in the following way:

Construction 3.2. (1) Building a 1-connected map: Looking at number of generators for the funda-

mental group of X (suppose it is n), then we can let K1 be a bouquet of n circles. We define ϕ to

map each circle to each generator, which gives us a surjection on π1. In the previous section, we

observed that this makes ϕ 1-connected.

(2) If ϕ : K → X is (n − 1) connected, we view πn(ϕ) as a Z[π1] module. Choosing the generators

{αi}i∈I , we observe that ∂αi ∈ πn−1(K), and so we can attach n cells along each boundary in K,

both constructing a skeleton Kn and extending ϕ to an n-connected map.

3.2. A Finite Dimensional Complex? Considering the map ϕ : K → X which we built inductively in

the previous section, the question arises: In what cases can we stop attaching i cells for i > n and obtain

a homotopy equivalence? The necessary and sufficient conditions are denoted by Dn. We deal with D1

separately:

Definition 3.3 (Property D1). Hi(X̃) = 0 for i > 1, and for any representation of π1(X)→ End(G),

Ext1π1(X)(π1(X), G) = 0

Where Ext1G(A,B) := {P : 0→ A→ P → B → 0 is an exact sequence of preserving the G group action }.

For n ≥ 2, we have the following properties:

Definition 3.4 (Property Dn, n ≥ 2). Hi(X̃) = 0 for i > n, and for any abelian group G with an action of

π1(X):

Hn+1
(
Homπ1(X)(C∗(X̃), G)

)
= 0

C∗(X̃) is the singular complex of X̃, and Homπ1(X)

(
C∗(X̃), G)

)
is the cochain complex where an n-

cochain is a group action preserving map from Cn(X̃) to G. As a reminder, the boundary maps are given by
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considering the normal boundary map ∂n : Cn(X̃)→ Cn−1(X̃) and defining dn : Homπ1(X)

(
Cn−1(X̃), G)

)
→

Homπ1(X)

(
Cn(X̃), G)

)
by dn(ϕ)(x) = ϕ(∂nx).

These properties give us the theorem:

Theorem 3.5. X is homotopy equivalent to a CW complex of dimension n iff X satisfies Dn.

For all n ∈ N, the forward direction is clear. We first look at the reverse direction for n = 1 and prove

this separately.

Lemma 3.6. If X satisfies D1, then it is homotopic to a bouquet of circles.

Proof. Since H1(X̃) = 0 as well, it follows by Whitehead’s theorem that X̃ is contractible, and so X is

a K(π1(X), 1) space as it has no higher homotopy groups. Now, Ext1π1(X)(π1(X), G) = 0 implies that

there are no such action preserving extensions of G by π1(X) except for the direct sum. Therefore, given

a group homomorphism from a free group F → π1(X) with kernel G, we observe that this map must split.

Necessarily, π1(X) must be isomorphic to a subgroup of a free group, and is therefore free. This implies that

X has the homotopy type of a bouquet of circles. �

Now, we can begin the proof for n ≥ 2. We start with a lemma:

Lemma 3.7. Consider ϕ : K → X as constructed in the last subsection (K is n− 1 dimensional), where X

is a space satisfying Dn. Then, πn(ϕ) is a projective Z[π1] module.

Proof. We note that by the aforementioned construction, we can simply assume that Xi = Ki for i < n.

Recall that

πn(ϕ) = πn(X,K) ∼= Hn(X̃, K̃) ∼= ker(∂n)/im(∂n+1) = Cn(X̃)/Bn(X̃) := Cn/Bn

Cn denotes the set of singular n chains of X̃ and Bn denotes the boundary, i.e. im(∂n+1). Observe that

every boundary of Cn is in K̃ (since K is the lower skeleton of X). Noting that Cn is free, we need to show

that the short exact sequence Bn → Cn → πn(ϕ) splits to deduce that πn(ϕ) is projective. If we consider

the map

∂n+1 : Cn+1 → Bn

it follows that the map is a cochain of Homπ1(X)(Cn+1(X̃), G) with coboundary ∂n+1 ◦partialn+2 = 0, since

∂2 = 0. By assumption Hn+1
(
Homπ1(X)(C∗(X̃), G)

)
= 0, so it must also be a cocycle, meaning that there

exists s : Bn → Cn such that ∂n+1 = s ◦ i ◦ ∂n+1, where i : Bn → Cn is the left map in the short exact

sequence. Since ∂n+1 as defined as onto (we purposely restricted the map to its image, i.e. Bn) we see that

s ◦ i = id, implying that the sequence splits. Therefore, we have shown that πn(ϕ) is projective. �

Suppose is πn(ϕ) is just a free module. Then, we get the following result:

Lemma 3.8. Suppose ϕ : K → X is an (n− 1) connected map, where K is an n− 1 complex and πn(ϕ) is

free. If we add n cells to K to construct n-dimensional complex Y making ϕ n-connected, it follows that Y

is homotopy equivalent to X.

Proof. Just like in the previous proof, we can take Y as a subcomplex of X. Immediately, Hi(Ỹ , K̃) = 0 if

i < n since K is all of the i skeletons of Y for i < n, and Hi(Ỹ , K̃) = 0 for i > n since Y is n dimensional.
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Further observe that Hn(Ỹ , K̃) = ker(∂n+1) = Cn(Ỹ ). Similarly, Hi(X̃, K̃) = 0 for i 6= n (this holds for

i > n because X satisfies Dn). Since we constructed Y to extend ϕ to an n connected map, it follows that

Hn(Ỹ , K̃) ∼= Hn(X̃, K̃) ∼= πn(ϕ) = 0

Therefore, by the long exact sequence

· · · → Hn(X̃, Ỹ )→ Hn−1(Ỹ , K̃)→ Hn−1(X̃, K̃) . . .

It follows that Hi(X̃, Ỹ ) = 0 for all i ∈ N, which implies that the map ϕ induces an isomorphism on all

homotopy groups, and by Whitehead’s theorem we get a homotopy equivalence. �

Now, we can prove the major theorem of this subsection.

Proof. If X satisfies and Dn and Fk for k ≤ n − 2, then using the usual construction, we get an n − 1

connected map ϕ : K → X such that K is an n − 1 dimensional complex with a finite k-skeleton for

k ≤ n− 2. By the previous lemma, πn(ϕ) is a projective Z[π1] module, implying that there exists a module

M such that πn(ϕ)⊕M ∼= F , where F is a free module. Now, we can construct the infinite-dimensional free

module:

F ′ := [πn(ϕ)⊕M ]⊕ [πn(ϕ)⊕M ]⊕ · · · = F ⊕ F ⊕ · · · = πn(ϕ)⊕ F ′

For each generator of F ′ we attach to Kn−1 a copy of an n− 1 sphere to get a new complex Y , and extend

ϕ to a map ϕ′ by sending each of these spheres to the base point at which π1(X) is defined. Now, observe

that we can turn the exact sequence

· · · → πn(ϕ)→ πn(ϕ′)→ πn(Y,K) = F → . . .

into:

· · · → Hn(X̃, K̃)→ Hn(X̃, Ỹ )→ Hn(Ỹ , K̃)→ . . .

Since Y dominates K, the sequence splits, giving us that πn(ϕ′) ∼= πn(ϕ)⊕F ′ = M ⊕F ′ = F ′. So πn(ϕ′) is

free. We can follow the preceding lemma to construct a finite n- dimensional complex that gives us homotopy

equivalence. �

3.3. Domination and Obstruction. Now, we combine the previous two subsections to answer the ques-

tion: When is a CW-complex finitely dominated (i.e. both finite skeleta and finite dimension)?

Theorem 3.9. A connected CW-complex X is finitely dominated by an n complex iff X satisfies Dn and

Fn.

Proof. The reverse direction is clear. For the forward direction, we construct an n-connected map ϕ : K → X,

where K is a finite n-complex. Now, construct the associated fibration p : Nϕ→ X and recall that if Ff is

the fiber then πi(p) ∼= πi−1(Ff ). Equivalent to finding a homotopy right inverse to ϕ, we can find a section

of the fibration. Notice that Hi(X,πi(p)) = 0 since πi(p) = πi(ϕ) = 0 for i ≤ n. Further, Hi(X,πi(p)) = 0

for i > n since X satisfies Dn (and therefore Di). As a result, there will be no obstructions to finding a

section, and so a section will exist, giving us a right homotopy inverse. Therefore, K dominates X. Further

if X satisfies Fn, we can make K satisfy Fn, and therefore make sure it has finite skeleta in all dimensions.

Therefore, X is finitely dominated. �

Now, observe that if X is finitely n-dominated, the previous two subsections have informed us that if we

look at πn(ϕ), where ϕ : K → X is n-connected, then it is not only finitely generated, but also a projective
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Z[π1] module. Therefore, πn(ϕ) must define an element of K̃0(Z[π]). A natural question arises: do different

n− 1 connected maps define different elements K̃0(Z[π])? The answer is no; a proof can be found in [1], and

we have left it out of the paper as it does not provide further intuition. Wall’s finiteness obstruction can

now be proven, concluding this section.

Theorem 3.10. If X is a complex finitely dominated by an n complex K with an (n− 1)-connected map ϕ,

then X has the homotopy type of a finite complex iff

[πn(ϕ)] ∈ K̃0(Z[π1])

is the zero element of the group.

Proof. If X is a finite complex, then we take K = X and ϕ to be the identity map, which would clearly give

us the zero element in K̃0(Z[π1]).

Now, suppose K is a finite n-complex dominating X and we constructed an n−1 connected map ϕ : K → X

such that [πn(ϕ)] = 0 ∈ K̃0(Z[π1]). Then, there exists a finitely generated free Z[π1]-module F such that

[πn(ϕ)] ⊕ F is free. Construct a bouquet of n − 1 spheres, attach them to K and extend ϕ by mapping

them to the base point of π1(X). Now, πn(ϕ) is free by arguments made in previous proofs, and so we get

a homotopy equivalence by the lemma in the previous subsection. �

4. A More Algebraic Understanding

Instead of defining the finiteness obstruction for a CW complex, we now define the obstruction for a chain

complex. This will allow us to apply obstruction theory in larger contexts.

Definition 4.1. Given a chain complex C∗, we define C(n) to be the n-skeleton, i.e. the chain complex

0→ Cn → · · · → C1 → 0. Further, C∗ is bounded above if there exists k ∈ N such that C∗ = C(k)

Now, we define a domination of chain complexes:

Definition 4.2. Given A∗ and C∗ that are finitely generated free R chain complexes for some ring R, we

define C∗ to dominated by A∗ if there exists a sequence of module homomorphisms hi : Ai → Ci such that

each hi has a right inverse chain map ki. Further, we say that C∗ is finitely dominated if A∗ is bounded

above.

We see how this form of domination coincides with the domination in the previous section.

Proposition 4.3. Suppose X satisfies Dn and is finitely dominated by an n complex K, and we construct

an n-connected map ϕ : K → X. We observe that ϕ further induces a finite domination of Ci(X̃) by Ci(K̃)

by inducing Z[π]-homomorphisms Ci(K̃)→ Ci(X̃) with right inverses.

It should be clear that ϕ induces such homomorphisms by the Hurewicz theorem. The right inverse

homomorphisms are induced by the right inverses we constructed in Lemma 3.8. Further, since X satisfies

Dn, all of the higher homology groups of X̃ are zero. We can now make sense of the wall obstruction for an

arbitrary chain complex.

Definition 4.4. Given an R-free chain complex C∗ such that the Ci are finitely generated for each i. If the

inclusion C(n−1) ↪−→ C is an R domination, then Hn(C,C(n)) is a finitely generated projective R module.

We can now define the wall invariant as:

w(C) = [Hn(C,C(n))] ∈ K̃0(R)
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We conclude with the propositon:

Proposition 4.5. Given a chain complex with the properties mentioned in the previous definition, w(C) = 0

iff C is R-chain equivalent to a finite R-free complex.

Observe that in the case of a CW-complex, R = Z[π1], C = C∗(X̃), and our n−1 connected map ϕ induces

the finite domination of chain complexes. Further, Hn(C,C(n−1)) = πn(ϕ) by the Hurewicz theorem. Now,

we provided a framework for discussing obstruction in any homology theory.
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